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ABSTRACT The field of natural language processing
(NLP) has seen a dramatic shift in both research direction and
methodology in the past several years. In the past, most work
in computational linguistics tended to focus on purely symbolic
methods. Recently, more and more work is shifting toward
hybrid methods that combine new empirical corpus-based
methods, including the use of probabilistic and information-
theoretic techniques, with traditional symbolic methods. This
work is made possible by the recent availability of linguistic
databases that add rich linguistic annotation to corpora of
natural language text. Already, these methods have led to a
dramatic improvement in the performance of a variety ofNLP
systems with similar improvement likely in the coming years.
This paper focuses on these trends, surveying in particular
three areas ofrecent progress: part-of-speech tagging, stochas-
tic parsing, and lexical semantics.

SOME LIMITATIONS OF RULE-BASED NLP

Until about 3 or 4 years ago, all natural language processing
(NLP) systems were entirely hand constructed, with grammars
and semantic components made up of many carefully hand-
crafted rules. Often the target coverage of such systems was
based on a small set of exemplar sentences; many such systems
were originally developed on fewer than several hundred
examples. While these systems were able to provide adequate
performance in interactive tasks with typed input, their success
was heavily dependent on the almost magical ability of users
to quickly adapt to the limitations of the interface.
The situation is quite different, however, when these rule

sets are applied open loop to naturally occurring language
sources such as newspaper texts, maintenance manuals, or even
transcribed naturally occurring speech. It now appears unlikely
that hand-coded linguistic grammars capable of accurately
parsing unconstrained texts can be developed in the near term.
In an informal study conducted during 1990 (1), short sen-
tences of 13 words or less taken from the Associated Press
(AP) newswire were submitted to a range of the very best
parsers in the United States, parsers expressly developed to
handle text from natural sources. None of these parsers did
very well; the majority failed on more than 60% of the test
sentences, where the task was to find the one correct parse for
each sentence in the test set. Another well-known system was
tested by its developer using the same materials in 1992, with
a failure rate of 70%.

This failure rate actually conflates two different, and almost
contradictory, problems of this generation of parsers. The first
is that the very large handcrafted grammars used by parsers
that aim at broad coverage often generate very large numbers

of possible parses for a given input sentence. These parsers
usually fail to incorporate some source of knowledge that will
accurately rank the syntactic and semantic plausibility of
parses that are syntactically possible, particularly if the parser
is intended to be domain independent. The second problem,
somewhat paradoxically, is that these parsers often fail to
actually provide the correct analysis of a given sentence; the
grammar of a natural language like English appears to be quite
vast and quite complex.
Why can't traditional approaches to building large software

systems, using techniques like divide and conquer, solve this
last problem? The problem is not that the grammar developers
are not competent or that there is a lack of effort; a number
of superb computational linguists have spent years trying to
write grammars with broad enough coverage to parse uncon-
strained text. One hypothesis is that the development of a large
grammar for a natural language leads into a complexity barrier
similar to that faced in the development of very large software
systems. While the human grammatical system appears to be
largely modular, the interaction of the subcomponents is still
sufficient to cause the entire system to be unmanageably
complex. The net result is that the grammatical system does not
appear to decompose easily into units that a team can develop
and then join together. In support of this view is the fact that
almost all of the large grammars extant are the result of a single
grammar developer working over a long period of time. If this
conclusion is correct, an approach to developing NLP systems
must be found other than careful handcrafting.

STATISTICAL TECHNIQUES:
FIRST APPEARANCE

One of the first demonstrations that stochastic modeling
techniques, well known in the speech-processing community,
might provide a way to cut through this impasse in NLP was
the effective application of a simple letter trigram model to the
problem of determining the national origin of proper names
for use in text-to-speech systems (2). Determining the etymol-
ogy of names is crucial in this application because the pro-
nunciation of identical letter strings differs greatly from lan-
guage to language; the string GH, for example, is pronounced
as a hard G in Italian, as in Aldrighetti, while most often
pronounced asF or simply silent in English, as in laugh or sigh.
This system estimates the probability that a name W comes
from language L as the product of the probabilities, estimated
across a set of known names from L, of all the contiguous
three-letter sequences in W. It then assigns W to the language
L, which maximizes this probability. The success of this
program came as a surprise to most of the NLP community, at
the time completely wedded to the symbolic techniques of
traditional artificial intelligence (Al). Many people in NLP
thought this application was a fluke, that the task solved by the
program was somehow special. In fact, this technique led the
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way toward application of statistical techniques to problems
that one would have thought required an "AI-complete"
solution, a full solution to the problem of modeling human
understanding.

In another sense this work was an application of an approach
to linguistic analysis called distributional analysis (3), which
reached its zenith in the 1950s. This work suggested that the
structure of language could be discovered by looking at
distributional patterns of linguistic entities. While the work of
Chomsky in the late 1950s showed that distributional analysis
could not be the whole story, most linguists assumed that
Chomsky's work implied that distributional techniques should
be abandoned entirely. This application showed that simple
distributional techniques were useful for solving hard engi-
neering problems that looked resistant to the application of a
priori knowledge.

THE ARCHITECTURE OF AN NLU SYSTEM
Fig. la gives an overview of a few of the crucial steps in the
process of decoding a sentence in a conventional NLU system,
given that the words that make up the sentence have been
determined either by a speech recognition system or by
tokenization of an ASCII source. When a new sentence comes
in, it is analyzed by a parser that both determines what part of
speech to assign to each of the words and combines these
part-of-speech tagged words into larger and larger grammat-
ical fragments, using some kind of grammar that tells what
combinations are possible and/or likely. The output of this
grammatical analysis, either a single-rooted tree or a string of
tree fragments, then goes through semantic analysis, which
determines the literal meaning of a sentence in isolation. This
phase of analysis decides both what the individual words mean
and how to combine the individual word meanings into larger

a

The speaker opened.

* Parsing
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The speaker opened.
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FIG. 1. Two decompositions of the architecture of an NLU system.
(a) Standard decomposition. (b) An alternate decomposition.

semantical structures. Often, this last step is done using some
form of compositional semantics, where the meaning of each
larger unit is constrained to be a relatively simple function of
the meaning of its parts. This meaning representation is then
further analyzed by pragmatic and discourse components to
determine what the sentence means given its particular context
of use and to place this representation into a multisentence
representation useful for such tasks as determining the refer-
ent of pronouns and other noun phrases.
For the purposes of the rest of this article, the problem will

be subdivided into somewhat smaller functional units than
given by the conventional model. This subdivision, given in Fig.
lb, reflects the development of statistical NLP techniques over
the past several years, with rate of progress roughly propor-
tional to height in the figure. The first success of statistical
modeling techniques forNLU was in the area of part-of-speech
determination-deciding, for example, whether the word saw
functioned in a given linguistic context as a singular noun or a
past tense verb. A variety of techniques now tag previously
unseen material with 95 to 97% accuracy. Recently, purely
context-free probabilistic parsing methods have been sup-
planted by parsing algorithms that utilize probabilities of
context-free rules conditionalized on aspects of surrounding
linguistic structure. Such parsers provide the correct parse as
the first parse output between 60 to 80% of the time, by
sentence, on naturally occurring texts from rich, but not
entirely unconstrained, domains such as the Wall Street Jour-
nal. They have performed with up to 91% accuracy on spoken
language tasks from limited domains like the Advanced Re-
search Projects Agency's (ARPA) Air Travel Information
Service (ATIS) domain. In the area of lexical semantics, a
range of promising techniques for performing word-sense
disambiguation have emerged recently, as well as some pre-
liminary work in automatically determining the selectional
restrictions of verbs, that is, what kind of objects can serve as
the subject or object of a given verb.

Finally, all of these methods depend crucially on the avail-
ability of training materials annotated with the appropriate
linguistic structure. These advances were made possible by the
development of corpora appropriately annotated with part-
of-speech and syntactic structure. This paper will also touch on
the development of such corpora.

PART-OF-SPEECH TAGGING
The task of a part-of-speech tagger is to map an input stream
of word tokens into the correct part of speech for each word
token in context. To do this, it must disambiguate words that
have the potential to be many different parts of speech. A
part-of-speech tagger, for example, should map the sentence

WordSense Can we can the can? into the string of parts of speech shown
Word S in Fig. 2. This problem of lexical disambiguation is a central

problem in building any NLP system; given a realistically large)PENWIIOUTH lexicon of English, many common words are used in multiple
TALKER parts of speech. Determining what function each word plays in

context is a crucial part of either assigning correct grammatical
OMpoSeoni structure for purposes of later semantic analysis or of providing
Semnts a partial heuristic chunking of the input into phrases for

purposes of assigning intonation in a text-to-speech synthe-
XLKER) sizer.

The problem of lexical disambiguation was thought to be
completely intractable 10 years ago by most of the NLP

Dicour community, and yet now a wide range of very different
techniques can solve this problem with 95 to 97.5% word
accuracy, for part-of-speech tag sets ofbetween 40 and 80 tags,

721 Words in: Can we can the can?
Part-of-speech stream out: modal pronoun verb det noun

FIG. 2. Part-of-speech taggers assign tags in context.

open -_ OPEN-MOUTH
saker TALKER

OPEN-MOUTH(TALKER)

Colloquium Paper: Marcus

-7

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
27

, 2
02

1 



www.manaraa.com

Proc. Natl. Acad. Sci. USA 92 (1995)

depending on the task and how accuracy is measured (see, e.g.,
refs. 4-10 and others). It is worth noting that many of these
errors are not very harmful; a significant fraction of the errors
consist of cases where one kind of verb is confused with
another kind of verb or one kind of noun with another. Many
of the parsers for which these taggers serve as preprocessors
are forgiving enough that the errors do not actually throw the
parser off track.
Most part-of-speech taggers are implemented as hidden

Markov models (HMMs). For an input sentence S = Wl, W2, . . .
wn, these taggers predict a tag ti for each word wi given two sets
of probabilities: First, P(w It) (the probability ofw given t), the
probability for each possible word w and each part-of-speech
tag t that if a given word is tagged with t, it is in fact the word
w. Second, P(ti+1) ti), the transition probability that the next
tag is ti+1, given that the current tag is ti. These taggers use a
linear time search utilizing the dynamic programming algo-
rithm, often called the Viterbi algorithm, to find the string of
tags T = tl, t2, . . . tn that maximize Hli P(wiIti) P(tiIti1).
The question here is how to estimate the value of the

parameters of the HMM. The standard approach for HMMs
is to use the forward/backward algorithm to automatically
estimate the parameters, as described by Jelinek (11) else-
where in this volume. However, systems that use the forward/
backward algorithm do not perform quite as well as those that
estimate parameters, at least initially, by simple counting, using
a corpus of text that has been pretagged with part-of-speech
information (9). In practice, such systems must use some
technique to smooth* very small counts. One could then use
the forward/backward algorithm to smooth these direct esti-
mates, but there is little evidence that this helps. Currently,
then, the best way to estimate the parameters of an HMM for
part-of-speech tagging is to hand tag a corpus and simply
count.
The theme that emerges here is true of most statistical NLP

applications and will be a leitmotif in what follows below. What
works best both for part-of-speech tagging using HMMs and
for the entire range of statistical NLP applications considered
in this paper, is some appropriate combination of stochastic
techniques and linguistic knowledge. While earlier work pro-
vides evidence that handcrafted symbolic representations of
linguistic knowledge are insufficient to provide industrial-
strength NLP, it also appears that the use of statistical methods
without some incorporation of linguistic knowledge is insuf-
ficient as well. This linguistic knowledge may either be repre-
sented in implicit form, as in the use of a pretagged corpus
here, or encoded explicitly in the form of a grammar.t In the
next few years, I believe we are going to see stochastic
techniques and linguistic knowledge more and more deeply
interleaved.

The Problem of Unknown Words

In conjunction with this observation it is important to realize
that if one simply implemented an HMM for part-of-speech
tagging as discussed above, the performance of the resulting
system on new material could well be no better than 70 or 80%
correct. Without exception, input is preprocessed before parts
of speech are assigned by an HMM; this preprocessing is often

*Since sentence probabilities are estimated by multiplying together
many estimates of local probabilities, any probability estimate of zero
leads to a zero probability for the entire string. Since any direct
estimate is based on only finite data, it is important to assume that
any event not observed at all has some very small, but nonzero
probability. How to best perfrom this smoothing of probability
estimates is a central technical issue in applying any of the methods
discussed in this chapter.

tFor readers familiar with logic, this is the distinction between
knowledge represented extensionally and knowledge represented
intensionally.

only partially discussed in technical descriptions of part-of-
speech taggers. The preprocessing copes with "unseen words,"
words that were never seen in the training data and for which
the system therefore has no prior knowledge of possible parts
of speech. It turns out that about half of the word types in the
Brown corpus (12, 13), a carefully balanced representative
corpus ofAmerican English, appear exactly once (about 32,000
out of 67,000 word types). This is consistent with Zipf's law, the
empirical law that the frequency of a word type is inversely
proportional to its rank. Nor can this problem be circumvented
by some appropriately huge lexicon; a very large number of
proper names appear on any newswire for the first time each
day.
How can this unseen word problem be handled? One simple

but quite effective technique is to tag each unknown word with
the most likely tag given its last three letters-an empirical
approximation to simple morphological analysis (5). A useful
heuristic for proper nouns in most English text is to use
capitalization, often combined with some other heuristics to
correct for unknown words used at the beginning of sentences
(10). The key point here is that these techniques for unseen
words go beyond using purely stochastic techniques to using
implicit and explicit linguistic knowledge, although in a trivial
way, to get the job done.

STOCHASTIC PARSING
All work on stochastic parsing begins with the development of
the inside/outside algorithm (14), which generalizes the Baum-
Welch algorithm for estimating HMMs to the estimation of
parameters of stochastic context-free grammars.* Just as each
iteration of the Baum-Welch algorithm over some training
corpus improves estimates of the parameters of the underlying
HMM, as judged by the criterion of maximal likelihood, so the
inside/outside algorithm improves parameter estimates of an
underlying probabilistic context-free grammar, judged by this
same criterion.
However, straightforward application of the inside/outside

algorithm does not appear to produce effective parsers; the
best results to date have resulted in parsers with about 35%
correct parses on fully reserved test material in simple parsing
tasks (17, 18). Two problems appear to lie behind this failure.
First, for realistic probabilistic context-free grammars
(PCFGs) the number of parameters that must be estimated is
very large; unless some a priori constraint is provided, n3
parameters must be estimated for a grammar with n nonter-
minal categories, categories that label not words but structures,
like noun phrase, verb phrase, or sentence.
But a worse problem is that the objective function that the

inside/outside procedure maximizes, namely the probability of
the training corpus given the grammar, is in fact not the
objective function that one wants to maximize to train effective
parsers. For parsing the goal is to maximize assignment of the
correct grammatical structure, to recursively subdivide the
sentence correctly into its constituent grammatical parts, de-
termined, say, by examining similar sentences in a treebank of
hand-parsed sentences. Unfortunately, there is no reason to
expect that a PCFG whose parameters are estimated by the
inside/outside algorithm will assign structures that have the
desired constituent structure.

In recent years a range of new grammatical formalisms have
been proposed that some suggest have the potential to solve a
major part of this problem. These formalisms, called lexicalized
grammar formalisms, express grammars in which the entire
grammar consists of complex structures associated with indi-
vidual words, plus some very simple general rules for com-

tFor a tutorial introduction to probabilistic context-free grammars and
the inside/outside algorithm, see refs. 15 and 16.
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bining these structures. Such grammar formalisms include
combinatory categorial grammars (CCGs), lexicalized tree-
adjoining grammars (LTAGs), and link grammars (19, 20). In
these lexicalized formalisms each word can be thought of as a
tree fragment; the full grammatical analysis of a sentence is
formed by specifying how and in what order the fragments
associated with each word in a sentence combine. Words may
themselves be ambiguous between different "parts of speech,"
here differing tree fragments. In these grammar formalisms
the bulk of parsing a sentence is just deciding on which part of
speech to assign to each word. Given this property of these
grammar formalisms, perhaps some way can be found to
extend the inside/outside algorithm appropriately so that its
objective function maximizes the probabilities of strings of
part-of-speech tagged words. If so, it is just a matter of extending
the search space to handle the large number of complex
part-of-speech structures of lexicalized grammars.§

Constraining the Inside/Outside Algorithm

Recently, a number of experiments have been performed that
combine the inside/outside algorithm with some form of
linguistic knowledge. In a recent experiment by Pereira and
Schabes (21), a modified version of the inside/outside algo-
rithm was applied to a corpus that was manually annotated
with a skeletal syntactic bracketing by the Penn Treebank
Project (22, 23). In this experiment the I/O algorithm was
modified to consider only PCFG rules that did not violate the
skeletal bracketing of the corpus, zeroing out many of the n3
parameters a priori. The algorithm was then trained on a
corpus of only 770 sentences collected in the Air Travel
Information System (ATIS) domain (24). The evaluation was
based on the "crossing brackets" parser evaluation metric of
Black et al. (25). This crossing-brackets measure counts the
number of brackets inserted during parsing that are consistent
with the correct bracketing of the sentence." Without con-
straint, the algorithm achieved 35% bracketing accuracy on
reserved test materials but achieved 90% bracketing accuracy
when constrained by the annotated corpus.

Conditioning PCFG Rules on Linguistic Context

One new class of models uses linguistic knowledge to condition
the probabilities of standard probabilistic context-free gram-
mars. These new models, which in essence augment PCFG
grammar rules with probabilistic applicability constraints, are
based on the hypothesis that the inability of PCFGs to parse
with high accuracy is due to the failure of PCFGs to model
crucial aspects of linguistic structure relevant to the appropri-
ate selection of the next grammar rule at each point within a
context-free derivation. Probabilities in the standard stochastic
context-free model are conditioned only on the type of non-
terminal that the grammar is about to expand; the key idea of
these new models is that this provides insufficient linguistic
context to adequately model the probabilities of rule expan-
sion. One such parser, that of Magerman and Marcus (26, 27),
assumes that expansion of any nonterminal is conditioned on
the type of nonterminal, the most likely part-of-speech assign-
ments for the next several words in the parser's input stream,
and the rule that has generated the particular nonterminal that
the parser is trying to expand. For example, the rule "NP ->

pronoun" might have a different probability when it expands
the NP in the rule "S -> NP VP" than when it expands the NP
in the rule "VP -* NP NP"). Tested on a corpus of sentences

from the Massachusetts Institute of Technology's Voyager
domain (28), this parser correctly parsed 89% of a reserved test
set. A sample list of sentences from this corpus, with length
distribution typical of the corpus as a whole, is given in Fig. 3.
Although the performance of this algorithm is quite impressive
in isolation, the sentences in this corpus are somewhat simpler
in structure than those in other spoken language domains and
are certainly much simpler than sentences from newswire
services that were the target of the parser evaluation discussed
in the introduction to this article.
On the other hand, a simple PCFG for this corpus parses a

reserved test set with only about 35% accuracy, comparable to
PCFG performance in other domains. If the probability of
each rule is conditioned on both the current nonterminal and
on the particular rule that gave rise to the current nonterminal,
then performance improves to about 50% accuracy. Condi-
tioning each rule on the expected part of speech of the next
several words in addition increases performance to 87.5%
accuracy. The key point here again is that combining a very
simple stochastic framework with a little bit of linguistic
knowledge greatly increases performance over each alone.
Many parsing techniques are now emerging that combine

stochastic techniques with linguistic knowledge in a number of
different ways. Again, as discussed briefly above, linguistic knowl-
edge can be encoded explicitly, perhaps in the form of a grammar,
or implicitly within the annotations of an annotated corpus.

In combination with stochastic methods, so-called covering
grammars can be used, grammars that provide at least one
correct parse for sentences of interest but that may also
produce spurious impossible parses. While these spurious
parses would be a problem if the grammar were used with a
purely symbolic parser, the hope is that when used within a
stochastic framework, spurious parses will be of much lower
probability than the desired analyses. One simple method for
combining explicit linguistic knowledge with stochastic tech-
niques is to use a stochastic technique to estimate the prob-
ability distribution for all and only the rules within the
grammar, drastically limiting the number of parameters that
need to be estimated within the stochastic model. While
advocated by many researchers, this method suffers from the
potential defect that it cannot model grammar rules that the
grammar writer overlooked or that occur rarely enough that
they were unseen in training materials. A somewhat more
powerful method is to (i) use the grammar to generate all
potential parses of a set of example sentences, (ii) create a
training set of trees by either hand picking the correct parse for
each sentence or simply using all potential parses (which works
far better than might be expected), and then (iii) use the usage
count of each grammar rule within this training set to provide
an initial estimate of the parameters of the associated stochas-
tic grammar, which might then be smoothed using the inside/
outside algorithm.

I m currently at MIT
Forty-five Pearl Street
What kind of food does LaGroceria serve
Is there a Baybank in Central Square
Where is the closest library to MIT
What s the address of the Baybank near Hong Kong
What s the closest ice cream parlor to Harvard University
How far is Bel Canto s from Cambridge Street in Cambridge
Is there a subway stop by the Mount Auburn Hospital
Can I have the phone number of the Cambridge City Hall
Can you show me the intersection of Cambridge Street and Hamp-

shire Street
How do I get to the closest post office from Harvard University
Which subway stop is closest to the library at forty-five Pearl Street

FIG. 3. Sample sentences from the Massachusetts Institute of
Technology's Voyager corpus.

§I thank Aravind Joshi for the above observation.
1Notice that this is a much easier measure than the percentage of
sentences parsed correctly; if one of, say, 33 brackets is inconsistent
in a given sentence, the sentence is 97% correct by the bracket
measure and simply wrong by the sentences-correct measure.
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Associated with food Associated with water
(y = food; fy = 2240) (y = water; fy = 3574)

I(x;y) fry fx x I(x;y) fry fx x

9.62 6 84 hoard 9.05 16 208 conserve
8.83 9 218 go_without 8.98 18 246 boil
7.68 58 3114 eat 8.64 6 104 ration
6.93 8 722 consume 8.45 10 198 pollute
6.42 6 772 run_of 8.40 20 408 contaminate
6.29 14 1972 donate 8.37 38 794 pump
6.08 17 2776 distribute 7.86 6 178 walk_on
5.14 51 15900 buy 7.81 43 1320 drink
4.80 53 21024 provide 7.39 15 618 spray
4.65 13 5690 deliver 7.39 9 370 poison

Computed over Parsed AP Corpus (N = 24.7 million SVO triples)

FIG. 4. What do you typically do with food and water (32)?

If the annotation of a corpus takes the form of syntactic
bracketing, the implicit knowledge encoded in the annotations
of a corpus can be used in exactly the same way as explicit
knowledge, to a first approximation. The key idea is that a
grammar can be simply extracted from the corpus, along with
counts for each rule, and then the methods discussed imme-
diately above are applicable. In fact, most grammatical anno-
tation provided in corpora to date is skeletal, providing only
partial structures, so the use of smoothing techniques is crucial.
To what extent might combinations of linguistic knowledge

with stochastic techniques improve the performance of parsers
in the near-term future? Two experiments, both on a corpus of
short sentences from computer manuals, cast some light here.
In the first experiment (1), both an explicit grammar and an
annotated corpus were used to build a stochastic parser that
parsed 75% of the sentences in a reserved test set completely
consistently with a hand-assigned bracketing. The second
experiment (29) is attempting to leave explicit grammars
behind, using instead a very rich set of linguistically relevant
questions in combination with decision tree techniques. These
questions examine not only syntactic properties, but lexical and
class-based information as well, thus combining a much richer
set of linguistic knowledge sources than any other model to
date. The decision tree uses this set of questions to search for
the grammar implicit in a very large hand-annotated corpus.
Published reports of early stages of this work indicate that this
technique is 70% correct on computer manual sentences of
length 7 to 17, where, to count as correct, each parse must
exactly match the prior hand analysis of that sentence in the

test corpus, a more stringent test criterion than any other result
mentioned here.
While this last experiment uses one uniform statistical

technique, decision trees, to make all parsing decisions, some
recent work suggests that effective parsing might be done by a
suite of interacting parsing experts, each handling a particular
grammatical phenomenon. Perhaps the clearest example of
this is a recent technique to resolve the ambiguous attachment
of prepositional phrases. Consider the sentence I saw the man
with the telescope; here the prepositional phrase with the
telescope might modify the man, meaning I saw the man who
had a telescope, or it might modify the main verb saw, meaning
I used the telescope to see the man. If the sentence were instead
I saw the planet with the telescope, the prepositional phrase
would certainly modify the main verb, but if it were I saw the
man with the hat the prepositional phrase would clearly modify
the man. Here, as in many other cases, it becomes clear that a
decision about grammatical structure depends crucially on the
properties of the lexical items themselves. A technique that
uses likelihood ratios to compare the strength of association
between the preposition and the main verb with the strength
of association between the preposition and the preceding noun
correctly assigns about 80% of prepositional phrases in sen-
tences from the AP newswire with structure identical to the
examples here (30). It is interesting to note that human judges,
given the same information, do this task at about 85 to 87%
accuracy. This experiment also points out the key role of lexical
properties in deciding grammatical structure. Its success sug-
gests that the crucial role of grammar is just to mediate the
properties of lexical items themselves. This would suggest, as

More with food More with water

|t food water w t food water w

7.47 58 1 eat -6.93 0 50 be_under
6.26 51 7 buy -5.62 1 38 pump
4.61 31 6 include -5.37 3- 43 drink
4.47 53 25 provide -5.20 0 29 enter
4.18 31 9 bring -4.87 1 30 divert
3.98 21 3 receive -4.80 0 25 pour
3.69 14 0 donate -4.25 0 20 draw
3.55 13 0 prepare -4.01 0 18 boil
3.31 13 1 offer -3.89 0 17 fall_into
3.08 13 2 deliver -3.75 1 20 contaminate

Computed over Parsed AP Corpus (N = 24.7 million SVO triples)

FIG. 5. What do you do more with food than with water (32)?
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does the recent work on lexicalized grammars discussed above,
that the words themselves are primary.

Annotated Corpora

Before leaving the question of syntax, I would like to say a word
about the production of annotated corpora themselves. There
are, at the moment, two large grammatically annotated cor-
pora for English-the IBM/Lancaster Treebank (31) and the
Penn Treebank (23). As of this time, only materials from the
second are generally available; they are distributed through the
Linguistic Data Consortium; because of this, and my familiar-
ity with this corpus, that is the focus here.
The Penn Treebank now consists of 4.5 million words of text

tagged for part of speech, with about two-thirds of this material
also annotated with a skeletal syntactic bracketing. All of this
material has been hand corrected after processing by automatic
tools. The two largest components of the corpus consist of over
1.6 million words of material from the Dow-Jones News Service,
hand parsed, with an additional 1 million words tagged for part
of speech and a skeletally parsed version of the Brown corpus (12,
13), the classic 1-million-word balanced corpus of American
English. This material has already been used for purposes ranging
from serving as a gold standard for parser testing to serving as a
basis for the induction of stochastic grammars to serving as a basis
for quick lexicon induction.

There is now much interest in very large corpora that have
quite detailed annotation, assuming that such corpora can be
efficiently produced. The group at Penn is now working toward
providing a 3-million-word bank of predicate-argument struc-
tures. This will be done by first producing a corpus annotated with
an appropriately rich syntactic structure and then automatically
extracting predicate-argument structure, at the level of distin-
guishing logical subjects and objects, and distinguishing a small
range of particular adjunct classes. This corpus will be annotated
by automatically transforming the current treebank into a level of
structure close to the intended target and then completing the
conversion by hand.

LEXICAL SEMANTICS AND BEYOND
We now turn to an area of very recent progress-lexical
semantics. At initial inspection, it would appear most unlikely
that statistical techniques would be of much use for either the
discovery or representation of the meanings of words. Sur-
prisingly, some preliminary work over the past several years
indicates that many aspects of lexical semantics can be derived
from existing resources using statistical techniques.

Several years ago it was discovered that methods from
statistics and information theory could be used to "tease out"
distinctions between words, as an aid to lexicographers devel-
oping new dictionaries (32). As an example, consider the
following: How could one distinguish the meaning offood and
water? Fig. 4 shows the mutual information score,"1 an infor-
mation theoretic measure, between various verbs and between
food and water in an automatically parsed corpus, where either
food or water is the object of that verb or, more precisely, where
one or the other is the head of the noun phrase which is the
object of the verb. The corpus used in this experiment consists
of 25 million subject-verb-object triples automatically ex-
tracted from the AP newswire by the use of a parser for
unrestricted text. The mutual information score is high if the
verb and noun tend to occur together and will tend toward 0
if the verb and noun occur together no more often than
expected by chance. Because this measure is the log of a ratio,
scores such as those shown in the table are quite high. What

The mutual information statistic is a measure of the interdependence
of two signals. It is defined as MI(x, y) = log [P(x, y)/P(x)P(y)].

Word: prendre
Informant: Right noun

Information: .381 bits

a For prendre the noun to the right is maximally informative.

Sense 1 Sense 2
part decision
mesure parole
note connaissance
exemple engagement
temps fin
initiative retraite

b Same French words that are informant values for each sense.

Pr(English/Sense 1) Pr(English/Sense 2)

to_take .433 to_make .186
to_make .061 to-speak .105
to_do .051 to_rise .066
to_be .045 to_take .066

to_be .058
decision .036
to-get .025
to_have .021

C Sense one translates as take, sense two as make.

FIG. 6. The two senses of Prendre translate as take or make (33).

kinds of things can you do with food? Well, according to the
AP newswire, you can hoard it, go without it, eat it, consume
it, etc. With water, you can conserve it, boil it, ration it, pollute
it, etc.** This indeed begins to reveal something about the
meaning of these verbs, based on distributional properties of
these words, that is, what other words they cooccur with.
To differentiate these two words somewhat more sharply,

one might ask what might be done more or less to one than the
other. Here, an appropriate metric is the t-score, which
contrasts the conditional probability of seeing food as object
given a particular verb with the conditional probability of
seeing water as object given that verb.tt Fig. 5 shows that one
eats or buys food far more than water and that one pumps or
drinks water far more than food. Perhaps surprisingly, these
descriptions get quite close to the heart of the difference
between food and water.

These experiments show that statistical techniques can be used
to tease out aspects of lexical semantics in such a way that a
human lexicographer could easily take advantage of this infor-
mation. However, for computers to utilize such information,
some kind of representation must be found to encode semantical
information in the machine. What kinds of representations might
be appropriate for automatic discovery procedures? Much re-
search on automatic machine translation is now being done using
the parallel French-English transcripts of the proceedings of the
Canadian parliament. This corpus has been used to test a
statistical technique that finds the most reliable local clue in
context to tease apart different senses of the same word in the
source language, representing that meaning as the translation in
the target language (33). An example of this technique is shown
in Fig. 6. Here, the most useful single clue for the translation of
an instance of the French wordprendre is the particular word that

**Because English contains a large number of so-called phrasal verbs,
whenever the parser encounters a verb followed immediately by a
prepositional phrase, as in go without food, the parser creates a
potential phrasal verb, for example, go_without and a triple where
the object of the preposition (herefood) is taken as the object of the
putative phrasal verb (here go_without).

ttThe formula computed is t = [P(foodlverb) - P(waterlverb)]!
{s2[P(food Iverb)] + s2[P(waterlverb)]}1/2.
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occurs as the first noun to its right. As shown in Fig. 6a, the
identity of this word provides, on average, 0.381 bits of informa-
tion as to how to distinguish between two different senses of
prendre. Fig. 6b shows some of the French words that distinguish
between one sense ofprendre (part, mesure, note, exemple, etc.)
and another (decision,parole, connaissance, etc.). As shown in Fig.
6c, the most likely translation into English for sense 1 is the verb
take; for sense 2, the most likely translation is the English verb
make. This technique has shown itself to be quite useful in current
work in machine translation. As a technique for word sense
disambiguation, it has the clear drawback that often a word with
multiple senses in language 1 has many of the same senses in
language 2, so it can only be used when the target language does
split the senses of interest.
Other researchers have found a richer and more robust

representation for words in the internal representation used
within WordNet, a large hand-built computer-based lexicon
(34). Because WordNet is fundamentally computer based, it
can be organized as a large graph of different kinds of relations
between words. These relations include not only relatively
standard ones such asX is a synonym of Y, orX is an antonym
ofY but also many other relations such as X is a kind ofY and
X is a part of Y. Concepts within WordNet are represented by
"synonym sets," sets of words that all share a core meaning.
One simple representation of a meaning of a word, then, is just
the synonym set, or synset, of the words that share that
meaning.

This hierarchy has been used to investigate the automatic
classification of verbs by the kinds of objects that they take, a
first step toward determining the selectional restrictions ofverbs
automatically (35). In this work, synonym sets are used to
represent classes of objects in both the input and output of a
program that computes a variant of the mutual information
statistic discussed above. Using synonym sets for the output
provides the general classification one seeks, of course. Using
synonym sets for input as well has an important added
advantage: it provides a solution to the sparse data problem
that plagues work in lexical statistics. Many of the counts of
verb-object pairs that make up the input to this program are
very small and therefore unreliable, in particular given a
corpus as small as the million-word Brown corpus (12, 13) used
in this experiment. By pooling data for particular nouns into
the synonym sets they fall into, much of this sparse data
problem can be solved.

Fig. 7 gives one example of the performance of Resnik's
statistic. These are the highest-ranking synonym sets for
objects of the verb open. The names of the synonym sets were
hand assigned within WordNet. Fig. 8 gives the single highest
ranking synonym set for a list of common verbs. These two
experiments show that a statistical approach can do surpris-
ingly well in extracting major aspects of the meaning of verbs,
given the hand encoding of noun meanings within WordNet.
These experiments suggest that it might be possible to combine
the explicit linguistic knowledge in large hand-built computa-
tional lexicons, the implicit knowledge in a skeletally parsed
corpus, and some novel statistical and information theoretic

Most Highly Associated
Verb Object SynSet

ask question
cell someone
climb stair
cook repast
draw cord
drink beverage
eat nutrient
lose sensory-faculty
play part
pour liquid
pull cover
push button
read written_material
sing music

FIG. 8. "Prototypical" classes of objects for common verbs (35).

methods to automatically determine a wide variety of aspects
of lexical semantics.
The work described above is typical of much recent work in

the area of lexical discovery. Other recent work has focused on,
for example, the use of distributional techniques for discovery
of collocations in text (36) and of subcategorization frames for
verbs (37) and to uncover lexical semantics properties (38).
Much other work has been done in this area; the references
given here are typical rather than exhaustive.

A QUESTION FOR TOMORROW
While the focus above has been on the effectiveness of recent
stochastic and statistical techniques, there is some evidence
that this effectiveness is due in large measure to the empirical
corpus-based nature of these techniques rather than to the
power of stochastic modeling. Surprisingly, symbolic learning
techniques have performed as well as stochastic methods on
two tasks considered above, despite the fact that they learn
only simple symbolic rules, with only simple counting used
during training, and then only to choose one potential rule over
another. This raises the question of whether the effectiveness
of the stochastic techniques above is essentially due to the fact
that they extract linguistic structure from a large collection of
natural data or is the result of their statistical nature. This
issue, I believe, will be resolved in the next several years.

In one experiment a very simple symbolic learner integrated
with a parser for free text produced a set of symbolic lexical
disambiguation rules for that parser. The parser, running with
the new augmented grammar, if viewed only as a part-of-
speech tagger, operates at about 95% word accuracy (8). What
makes this result all the more surprising is that this parser
works strictly left to right in a fully deterministic fashion.
Recently, a very simple symbolic learning technique called
error-based transformation learning was applied to the tagging
problem (5). The resultant tagger operates with a set of only

SynSet Name Typical members

entrance door
mouth mouth
repository store, closet, locker, trunk
container bag, trunk, locker, can, box, hamper
time-period tour, round, season, spring, session, week, evening, morning, saturday
oral_communication discourse, engagement, relation, reply, mouth, program, conference, session
writing scene, book, program, statement, bible, paragraph, chapter

FIG. 7. Classes of things that are opened (35).
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160 simple rules, plus a table of the most likely tag in isolation
for each word. The tagger begins by tagging each word with the
most likely tag in isolation and then applies each of the 160
rules in order to the entire corpus. These rules are of the form
In a context X, change tag A to tag B. This tagger operates at
about 96% word accuracy.

This learning algorithm has also been applied to the problem
of bracketing English text, with very surprising results (39).
The learner begins by assuming that English is strictly right
branching and then learns a set of rules using exactly the same
learning technique as used in the tagger discussed above,
except that here the potential environments for rule applica-
tion are very simple configurations in the bracketed string, for
example, ifsome category Xis preceded by a rightparen then ...
or ifa leftparen falls between category Xand category Ythen....
There are only two possible rule operations that simply transform
the binary branched trees with bracketings ((A B) C) and (A (B
C)) into each other. The parser was trained on a small
500-sentence bracketed subset of material from the Wall Street
Journal, of sentences less than 15 words in length, and acquired
about 160 rules. Tested on a reserved test set of sentences of
the same length, the parser bracketed 54% of the sentences
completely consistently with the original bracketing; 72% of
the sentences were bracketed with one bracketing error or less.
Trained on only 250 sentences of length n, n ' 25, the parser
again acquired about 160 rules and parsed a similar reserved
test set at 30% of sentences bracketed correctly. In recent
unpublished experiments this same technique was applied to
the problem of labeling these bracketed but unlabeled struc-
tures, achieving about 95% correct labeling, by node.

Perhaps this learning technique will lead to an even more
powerful stochastic method of some kind. What is unique
about this learner is that each rule applies to the output of the
previous rule. But perhaps it will turn out that the power of
these methods comes from use of a corpus itself. Time will tell.
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Aravind Joshi, Mark Liberman, David Magerman, Yves Schabes, and
David Yarowsky for helpful discussions. Thanks also to two anony-
mous reviewers for many excellent comments and suggestions.
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